Trees with Equal Domination and Restrained Domination Numbers

نویسندگان

  • Peter Dankelmann
  • Johannes H. Hattingh
  • Michael A. Henning
  • Henda C. Swart
چکیده

Let G = (V, E) be a graph and let S ⊆ V . The set S is a packing in G if the vertices of S are pairwise at distance at least three apart in G. The set S is a dominating set (DS) if every vertex in V − S is adjacent to a vertex in S. Further, if every vertex in V − S is also adjacent to a vertex in V − S, then S is a restrained dominating set (RDS). The domination number of G, denoted by γ(G), is the minimum cardinality of a DS of G, while the restrained domination number of G, denoted by γr(G), is the minimum cardinality of a RDS of G. The graph G is γ-excellent if every vertex of G belongs to some minimum DS of G. A constructive characterization of trees with equal domination and restrained domination numbers is presented. As a consequence of this characterization we show that the following statements are equivalent: (i) T is a tree with γ(T ) = γr(T ); (ii) T is a γ-excellent tree and T 6= K2; and (iii) T is a tree that has a unique maximum packing and this set is a dominating set of T . We show that if T is a tree of order n with ` leaves, then γr(T ) ≤ (n + ` + 1)/2, and we characterize those trees achieving equality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trees with Equal Restrained Domination and Total Restrained Domination Numbers

For a graph G = (V,E), a set D ⊆ V (G) is a total restrained dominating set if it is a dominating set and both 〈D〉 and 〈V (G)−D〉 do not have isolated vertices. The cardinality of a minimum total restrained dominating set in G is the total restrained domination number. A set D ⊆ V (G) is a restrained dominating set if it is a dominating set and 〈V (G) − D〉 does not contain an isolated vertex. Th...

متن کامل

Trees with Equal Total Domination and Total Restrained Domination Numbers

For a graph G = (V, E), a set S ⊆ V (G) is a total dominating set if it is dominating and both 〈S〉 has no isolated vertices. The cardinality of a minimum total dominating set in G is the total domination number. A set S ⊆ V (G) is a total restrained dominating set if it is total dominating and 〈V (G) − S〉 has no isolated vertices. The cardinality of a minimum total restrained dominating set in ...

متن کامل

On trees with equal Roman domination and outer-independent Roman domination numbers

A Roman dominating function (RDF) on a graph $G$ is a function $f : V (G) to {0, 1, 2}$satisfying the condition that every vertex $u$ for which $f(u) = 0$ is adjacent to at least onevertex $v$ for which $f(v) = 2$. A Roman dominating function $f$ is called an outer-independentRoman dominating function (OIRDF) on $G$ if the set ${vin Vmid f(v)=0}$ is independent.The (outer-independent) Roman dom...

متن کامل

A characterization of trees with equal Roman 2-domination and Roman domination numbers

Given a graph $G=(V,E)$ and a vertex $v in V$, by $N(v)$ we represent the open neighbourhood of $v$. Let $f:Vrightarrow {0,1,2}$ be a function on $G$. The weight of $f$ is $omega(f)=sum_{vin V}f(v)$ and let $V_i={vin V colon f(v)=i}$, for $i=0,1,2$. The function $f$ is said to bebegin{itemize}item a Roman ${2}$-dominating function, if for every vertex $vin V_0$, $sum_{uin N(v)}f(u)geq 2$. The R...

متن کامل

On Roman, Global and Restrained Domination in Graphs

In this paper, we present new upper bounds for the global domination and Roman domination numbers and also prove that these results are asymptotically best possible. Moreover, we give upper bounds for the restrained domination and total restrained domination numbers for large classes of graphs, and show that, for almost all graphs, the restrained domination number is equal to the domination num...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Global Optimization

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2006